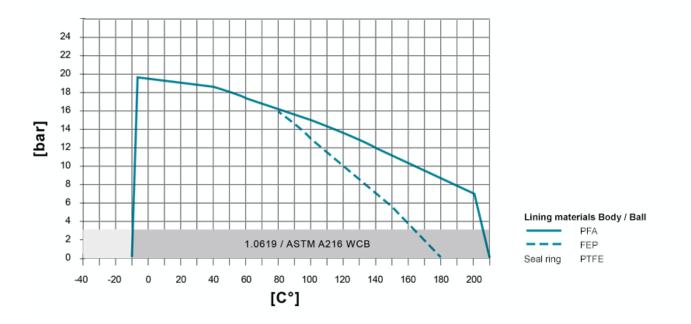


Two way ball valve with full bore, chemical-resistant lining, ISO top flange

DIN-EN: DN 15 - 100 / PN 10 - 25 ASME: NPS ½" - 8" / class 150 PT range: -30 < T < 230°C


Design Features

Design Characteristics

- full bore
- split body
- integral ball and stem
- anti-blow-out
- with readjustable stuffingbox packing
- cavity minimized
- maintenance free self lubricating
- mounting-flange for actuators acc. to DIN ISO 5211
- with chemical resistant lining thickness min. 3 mm
- fugitive emmission resp. clean air act certified (TA Luft 2002 approval)
- Directive 2014/68/EU
- FDA conformity

PT-Diagram

General Pressure-Temperature-Diagram

The specified values depend on the respective application (medium). Operating temperatures under -20°C only with body material 1.4408 or low-temperature steel. Hight pressure resistance / temperature resistance on request, e.g. PN 40.

Sleeve: There are different sleeve materials / compounds available.

Materials

Standard body materials

• Ductile cast iron ENJS 1049, ASTM Gr 60-40-18 / A395

Standard plug materials

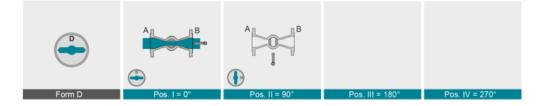
• Stainless Steel 1.4308, ASTM A351 CF8

Special materials

- Carbon Steel 1.0619, ASTM A216 WCB
- Stainless Steel 1.4408, ASTM A351 CF8M
- Unalloyed stainless steel casting (low Temp.) 1.1138, LCC/LCB/A352

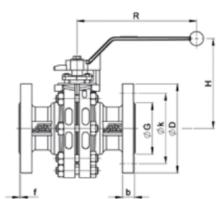
Lining materials

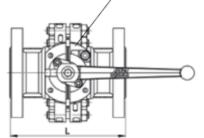
- Body: PFA, PFA-conductive, FEP
- Ball: PTFE, PFA, PFA-conductive, FEP
- Seal Ring: PTFE


Sealing Systems

Chemical sealing to prevent fugitive emissions of aggressive and toxic media with PTFE packing for additional stem sealing; $T_{max} 230$ °C

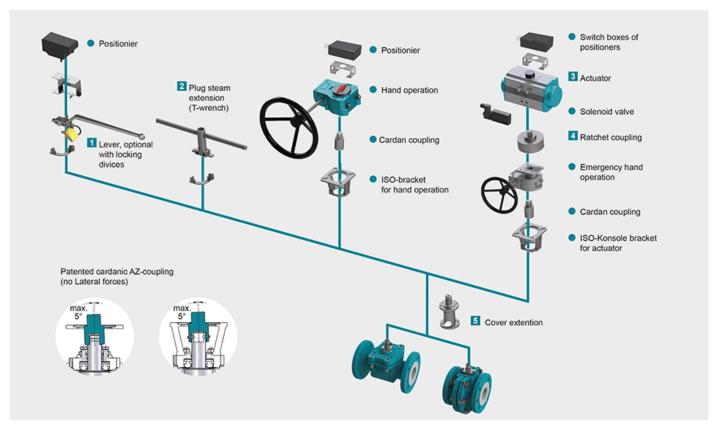
Type CAS


read more [...]


Port Forms

Dimensions

/ ISO-mounting flange and dihedron at ball shaft



DIN EN 1092/1/ 558-1	DN	PN	L	øD	øG	fl: øk	ange bo No.	re ø	ь	f	R	н	ISO 5211 mounting flange	dihedron [mm]	Torque [Nm] ∆p=10bar*	weight [Kg]	K _{vs} value [m³/h]	C _v -Wert [US.gal/min]
	15	10-40	130	95	45	65	4	14	16	2	170	110	F07	11	9	3,4	19	22
	20	10-40	150	105	58	75	4	14	18	2	170	115	F07	11	13	4,4	36	42
	25	10-40	160	115	68	85	4	14	18	2	170	117	F07	11	18	6,5	70	81
	40	10-40	200	150	88	110	4	18	18	2	170	128	F07	11	21	9,4	193	200
	50	10-40	230	165	102	125	4	18	20	3	230	143	F10	14	40	16,3	323	374
	80	10-40	310	200	138	160	8	18	24	3	320	174	F12	19	110	30	947	1095
	100	10-16 25-40	350	220 235	158 162	180 190	8	18 22	20 24	3	420	200	F14	22	150	38,4	1446	1672
	150	10-16 25-40	350	285 300	212 218	240 250	8	22 26	22 26	3	600	250	F16	27	200	75,3	3338	3859
	200R	10 16	292	340	268	295	8 12	22	24	3	600	250	F16	27	200	107,9	***	***
	200	10 16	457	340	268	295	8 12	22	24	3	**	**	F16	36	270	198	6362	7356
ASME B 16.5/ 16.10	NPS	Class	L	øD	øG	fl: øk	ange bo No.	re ø	b	f	R	н	IS 0 5211 mounting flange	dihadron [mm]	Torque [Nm] ∆p=10bar**	weight [Kg]	K _{vs} value [m³/h]	C _v -Wert [US.gal/min]
	1/2"	150	108	88,9	35,1	60,5	4	15,7	11,2	1,6	170	110	F07	11	9	2,5	20	23
	3/4"	150	117,5	98,6	42,9	69,9	4	15,7	13,7	1,6	170	115	F07	11	13	3,2	41	48
	1"	150	127	108	50,8	79,2	4	15,7	14,2	1,6	170	117	F07	11	18	5,5	***	***
	1½"	150	165	127	73	98,6	4	15,7	17,5	1,6	170	128	F07	11	21	7,6	***	***
	2"	150	178	152,4	91,9	120,7	4	19,1	19,1	1,6	230	143	F10	14	40	12,6	***	***
	3"	150	203	190,5	127	152,4	4	19,1	23,9	1,6	320	174	F12	19	110	26	***	***
	4*	150	229	228,6	157,2	190,5	8	19,1	23,9	1,6	420	200	F14	22	150	39,4	***	***
	6"	150	267	279,4	215,9	241,3	8	22,4	25,4	1,6	600	250	F16	27	200	76,6	***	***
	8"R	150	292	342,9	269,7	298,5	8	22,4	29,4	2,5	600	250	F16	27	200	107,9	***	***
	8"	150	457	342,9	269,7	298,5	8	22,4	29,4	2,5	¥.K	**	F16	36	270	198	***	***

For geometric reasons, threads are used in the flange bores in a few cases

Actuation

1 Locking Devices

Pilot valve combinations, pad lock eyelets, linear key conception, indexing plunger arrestor. read more [...]

2 Plug stem extension

Solid construction in stainless steel with T-wrench, Standard extension 100 mm or 150 mm, non standard lengths are available on request read more [...]

3 Actuators

Actuators for mounting-flange acc. to DIN ISO 5211 read more [...]

NEW: Pneumatic actuator AIR GEAR for plug valves with high torque =150.000 Nm read more [...]

4 Ratched coupling

To usw on multiport valves with standard 90° actuator for bigger switchpositions than 90° read more [...]

5 Cover extension

Solid construction in stainless steel, Standard extension 100 mm or 150 mm high, non standard lengths are available on request . Hexagonal bolts on adjustment ring freely accessible. Note: Don't use with sealing FSN/FSN-SL and CASN/CASN-SL read more []

read more [...]